Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Orhan Büyükgüngör, ${ }^{\text {a }}$ Bașak Koșar, ${ }^{\text {a }}$ * Nesuhi Akdemir, ${ }^{\text {b }}$ Erbil Ağar ${ }^{\text {b }}$ and Ismail Gümrükçüoğlu ${ }^{\text {b }}$

${ }^{\text {a }}$ Department of Physics, Ondokuz Mayıs University, TR-55139 Samsun, Turkey, and
${ }^{\mathbf{b}}$ Department of Chemistry, Ondokuz MayIs University, TR-55139 Samsun, Turkey

Correspondence e-mail: bkosar@ilkposta.com

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.005 \AA$
R factor $=0.039$
$w R$ factor $=0.113$
Data-to-parameter ratio $=7.7$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

4-(2,6-Dimethylphenoxy)phthalonitrile

In the title compound, $\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}$, two benzene rings are linked by an O atom. One of the benzene rings carries two cyano groups. The compound crystallizes with two independent molecules in the asymmetric unit. The crystal structure is stabilized by weak van der Waals interactions.

Comment

Monosubstituted phthalonitriles, such as the title compound, 4-(2,6-dimethylphenoxy)phthalonitrile, (I), are generally used for the synthesis of symmetrically and unsymmetrically substituted phthalocyanines and subphthalocyanines (Leznoff \& Lever, 1996). Phthalocyanines have been the subject of constant research as a result of their widespread applicability, such as in organic pigments, chemical sensors, electrochromic display devices, photovoltaic cells, xerography, optical disks, catalysis and non-linear optics (McKeown, 1998). We present here the structure of (I).

An ORTEP-3 view (Farrugia, 1997) of (I) and a packing diagram are shown in Figs. 1 and 2, respectively. Selected bond lengths and angles are given in Table 1. The triple-bond lengths are in agreement with reported values (Ocak et al., 2004; Atalay et al., 2003; Çoruh et al., 2002; Petek et al., 2004). The bond lengths and angles of the two molecules in the asymmetric unit are very similar.

Figure 1
A view of one molecule of the asymmetric unit of (I), showing the atomnumbering scheme and 50% probability displacement ellipsoids.

Experimental

4-(2,6-Dimethylphenoxy)phthalonitrile was synthesized according to a reported procedure (Sakaguchi et al., 1999). Single crystals were obtained from methanol at room temperature via slow evaporation.

Crystal data

$\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}$

$$
\begin{aligned}
& Z=2 \\
& D_{x}=1.204 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation } \\
& \text { Cell parameters from } 10590 \\
& \text { reflections } \\
& \theta=1.9-29.3^{\circ} \\
& \mu=0.08 \mathrm{~mm}^{-1} \\
& T=293(2) \mathrm{K} \\
& \text { Prism, colourless } \\
& 0.50 \times 0.40 \times 0.25 \mathrm{~mm}
\end{aligned}
$$

$M_{r}=248.28$
Triclinic, $P 1$
$a=8.160$ (5) Å
$b=8.451$ (5) \AA
$c=11.629$ (5) A
$\alpha=97.921(5)^{\circ}$
$\beta=108.234$ (5) ${ }^{\circ}$
$\gamma=110.548(5)^{\circ}$
$V=685.0$ (7) \AA^{3}

Data collection

Stoe IPDS-2 diffractometer ω scans
Absorption correction: by
integration (X-RED32;
Stoe \& Cie, 2002)
$T_{\text {min }}=0.964, T_{\text {max }}=0.981$
13674 measured reflections
2681 independent reflections
2415 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.075$
$\theta_{\text {max }}=26.0^{\circ}$
$h=-10 \rightarrow 10$
$k=-10 \rightarrow 9$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.039$
$w R\left(F^{2}\right)=0.113$
$S=1.03$
2681 reflections
348 parameters
H -atom parameters constrained
$l=-14 \rightarrow 14$

$$
\begin{aligned}
w= & 1 /\left[\sigma^{2}\left(F_{\sigma}{ }^{2}\right)+(0.0767 P)^{2}\right. \\
& +0.0109 P]
\end{aligned}
$$

$$
\text { where } P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3
$$

$(\Delta / \sigma)_{\text {max }}<0.001$
$\Delta \rho_{\text {max }}=0.15$ e \AA^{-3}
$\Delta \rho_{\text {min }}=-0.13 \mathrm{e}^{\AA^{-3}}$

Table 1
Selected geometric parameters ($\left(\AA,{ }^{\circ}\right)$.

$\mathrm{C} 1 b-\mathrm{O} 1 b$	$1.367(3)$	$\mathrm{C} 8 b-\mathrm{N} 2 b$	$1.136(3)$
$\mathrm{C} 1 a-\mathrm{O} 1 a$	$1.360(3)$	$\mathrm{C} 8 a-\mathrm{N} 2 a$	$1.140(4)$
$\mathrm{C} 1 a-\mathrm{C} 6 a$	$1.382(3)$	$\mathrm{C} 9 b-\mathrm{O} 1 b$	$1.392(3)$
$\mathrm{C} 7 b-\mathrm{N} 1 b$	$1.134(4)$	$\mathrm{C} 9 a-\mathrm{O} 1 a$	$1.404(3)$
$\mathrm{C} 7 a-\mathrm{N} 1 a$	$1.134(5)$		
$\mathrm{N} 1 b-\mathrm{C} 7 b-\mathrm{C} 3 b$	$179.1(3)$	$\mathrm{N} 2 b-\mathrm{C} 8 b-\mathrm{C} 4 b$	$178.2(3)$
$\mathrm{N} 1 a-\mathrm{C} 7 a-\mathrm{C} 4 a$	$178.8(4)$	$\mathrm{N} 2 a-\mathrm{C} 8 a-\mathrm{C} 5 a$	$177.0(4)$

All H atoms were refined using a riding model, with $\mathrm{Csp} p^{2}-\mathrm{H}=$ $0.93 \AA$, methyl C-H = $0.96 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.2$ or 1.5 times $U_{\text {eq }}(\mathrm{C})$. In addition, the methyl groups were allowed to rotate but not to tip. The Friedel opposites were merged in the absence of significant anomalous scattering effects.

Data collection: X-AREA (Stoe \& Cie, 2002); cell refinement: $X-A R E A$; data reduction: X-RED32 (Stoe \& Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular

Figure 2
A packing diagram of (I), viewed approximately along the b axis.
graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

The authors thank the staff of the X-ray Laboratory of the Department of Physics, Ondokuz Mayıs University, for their help and advice.

References

Atalay, Ş., Ağar, A., Akdemir, N. \& Ağar, E. (2003). Acta Cryst. E59, o1111o1112.
Çoruh, U., Akdemir, N., Ağar, E., Kim, Y. \& Erdönmez, A. (2002). Acta Cryst. E58, o994-o996.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Leznoff, C. C. \& Lever, A. B. P. (1996). Phthalocyanines: Properties and Applications, Vols. 1-4. Weinheim: VCH Publishers.
McKeown, N. B. (1998). Phthalocyanine Materials: Synthesis, Structure and Function. Cambridge University Press.
Ocak, N., Çoruh, U., Akdemir, N., Kantar, C., Ağar, E. \& Erdönmez, A. (2004). Acta Cryst. E60, o33-o34.

Petek, H., Işik, Ş., Akdemir, N., Kantar, C., Ağar, E. \& Şenel, I. (2004). Acta Cryst. E60, o256-o257.
Sakaguchi, T., Shirai, H., Hanabusa, K., Kımura, M. \& Kudo, T. (1999). J. Porphyrins Phthalocyanines, 3, 65-69.
Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.
Stoe \& Cie (2002). X-AREA and X-RED32. Stoe \& Cie, Darmstadt, Germany.

